If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-7z^2-2z+6=0
a = -7; b = -2; c = +6;
Δ = b2-4ac
Δ = -22-4·(-7)·6
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{43}}{2*-7}=\frac{2-2\sqrt{43}}{-14} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{43}}{2*-7}=\frac{2+2\sqrt{43}}{-14} $
| 7x-6=4x+2 | | 2x-3+12x=4(5x-3)+6 | | (20+2x)(28+2x)=1584 | | 5(2x-3)-5x=1-6(3x-5) | | 5s−12=41s | | 5.4+x=7.4-x | | 32=-6u+(u-4) | | 4x-x+4=14 | | 2x=340÷4 | | -3(x+9)-5=-32 | | 6-4z=18 | | x-19/9=4/3 | | 67+x=-382 | | n+n-12=38 | | 8(x+4)=-16 | | 6+5x=-4x+51 | | 25=2y-13 | | -17=x | | 2-1/3x=3 | | 9k+24=18k-39 | | x+276=194 | | 6+5x=4x+51 | | 450=x+10 | | s-76=275 | | 2b-8=4b | | 2/3-3x/4=1/2(2x-1) | | 21x-2+4+20x=90 | | 1/2x-2=3/10x=1 | | 21x-2+4+20x=180 | | 21x-2=4+20x | | 30/70=21/x | | -7(x+1)=-3(7x-3)+2x |